A Two-Stage Strategy for Real-Time Dense 3D Reconstruction of Large-Scale Scenes

نویسندگان

  • Diego Thomas
  • Akihiro Sugimoto
چکیده

The frame-to-global-model approach is widely used for accurate 3D modeling from sequences of RGB-D images. Because still no perfect camera tracking system exists, the accumulation of small errors generated when registering and integrating successive RGB-D images causes deformations of the 3D model being built up. In particular, the deformations become significant when the scale of the scene to model is large. To tackle this problem, we propose a two-stage strategy to build in details a large-scale 3D model with minimal deformations where the first stage creates accurate small-scale 3D scenes in real-time from short subsequences of RGB-D images while the second stage re-organises all the results from the first stage in a geometrically consistent manner to reduce deformations as much as possible. By employing planar patches as the 3D scene representation, our proposed method runs in real-time to build accurate 3D models with minimal deformations even for large-scale scenes. Our experiments using real data confirm the effectiveness of our proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Online Surface Correction for Real-time Large-Scale 3D Reconstruction

State-of-the-art methods for large-scale 3D reconstruction from RGB-D sensors usually reduce drift in camera tracking by globally optimizing the estimated camera poses in real-time without simultaneously updating the reconstructed surface on pose changes. We propose an efficient on-the-fly surface correction method for globally consistent dense 3D reconstruction of large-scale scenes. Our appro...

متن کامل

Chisel: Real Time Large Scale 3D Reconstruction Onboard a Mobile Device using Spatially Hashed Signed Distance Fields

We describe CHISEL: a system for real-time housescale (300 square meter or more) dense 3D reconstruction onboard a Google Tango [1] mobile device by using a dynamic spatially-hashed truncated signed distance field[2] for mapping, and visual-inertial odometry for localization. By aggressively culling parts of the scene that do not contain surfaces, we avoid needless computation and wasted memory...

متن کامل

Feasibility of using smartphones in the reconstruction of the interior architecture of the building without using interior control points

The limitation of land in big cities has caused the vertical growth of cities; for example, high-rise buildings on the ground and underground urban facilities can be mentioned. This restriction has increased the value of land in cities, and on the other hand, it has created some new and complicated technical and legal aspects in the cadastral issues. To respond to these new technical and legal ...

متن کامل

Collaborative Large-Scale Dense 3D Reconstruction with Online Inter-Agent Pose Optimisation

Reconstructing dense, volumetric models of real-world 3D scenes is important for many tasks, but capturing large scenes can take significant time, and the risk of transient changes to the scene goes up as the capture time increases. These are good reasons to want instead to capture several smaller sub-scenes that can be joined to make the whole scene. Achieving this has traditionally been diffi...

متن کامل

Surface Reconstruction from Multi - View Stereo of Large - Scale Outdoor Scenes

—This article describes an original method to reconstruct a 3D scene from a sequence of images. Our approach uses both the dense 3D point cloud extracted by multi-view stereovision and the calibrated images. It combines depth-maps construction in the image planes with surface reconstruction through restricted Delaunay triangulation. The method may handle very large scale outdoor scenes. Its acc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014